Thursday, July 9, 2015

@MAKE #Electronics Experiment 30: Fuzz

From Make: Electronics, by Charles Platt. Sebastopol, CA: Maker Media, Inc, 2009, p 259.

In Experiment 30, we are creating distortion rather than filtering.  It's really an extension of Experiment 29, using a schematic similar to part 2. The differences are:
  1. The 10K and 33K resistors on TEA2025B IN1 pin 10 are replaced by an 820 Ohm resistor. The audio input still comes in at this point.
  2. There are no filters. The speaker connections go directly to OUT1 (pin 2) and OUT2 (pin 15) of the amp. 
  3. The 680K resistor on 555 and 500Ohm Pot on output pin 3 of the 555 are replaced by a .1uf cap, going to the base pin of a 2N2222 transistor (Q1). The rest of the 555 connections are unchanged. The 100K Pot still adjusts frequency.
  4.  The big difference is the addtion of the transistors.  The collector of Q1 is connected to power through a 33K resistor. The emitter of Q1 is connected to a 1K resistor and 1uf capacitor, which are also connected to the emitter of Q2.  Q2's base pin is connected to the 33K resistor, power, and Q1's collector. Q2's emitter is connected to a 100K pot through an 8K2 and 390 Ohm resistor and .22uf cap, with the other side of the pot connected to the audio input.
The transistors amplify the waveform coming from the 555, as adjusted by Pot1.  This signal overwhelms the amp, causing distortion to a degree determined by Pot2, which Charles calls the "fuzz adjuster."

I spent some time with the datasheet for the TEA2025B.  It's a stereo amp that we used in "bridge mode" for these Experiments 29 and 30.  The leads to the single speaker are connected to OUT1 and OUT2 (pins 2 and 15), and the audio input goes to IN1 (pin 10). In stereo mode, each speaker would have one lead connected to an output and the other to GND, and the additional audio input would connect to IN2 (Pin 7), which would have the same .22uf cap + resistor combination as IN1,

Another interesting experiment.  I plan to fuss around more with the TEA2025 and associated resistor and capacitor values, just for grins.

One curiosity: as reported here and by +Eric Buijs, the TEA2025 overheats, and overheats a lot at 9V.  I was having trouble getting go0d results from this experiment, so I decided to swap out the chip. It hat melted the breadboard under it, and the new chip gave me what I expected (including overheating).  The datasheet says it will take up to 15V, but at least 2 of us have experienced overheating.